Supervised aggregated feature learning for multiple instance classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-Instance Learning: Multiple Feature Selection on Instance Representation

In multiple-Instance Learning (MIL), training class labels are attached to sets of bags composed of unlabeled instances, and the goal is to deal with classification of bags. Most previous MIL algorithms, which tackle classification problems, consider each instance as a represented feature. Although the algorithms work well in some prediction problems, considering diverse features to represent a...

متن کامل

Multiple-Instance Learning for Natural Scene Classification

Multiple-Instance learning is a way of mod-eling ambiguity in supervised learning examples. Each example is a bag of instances, but only the bag is labeled-not the individual instances. A bag is labeled negative if all the instances are negative, and positive if at least one of the instances in positive. We apply the Multiple-Instance learning framework to the problem of learning how to classif...

متن کامل

Multiple Instance Learning for Malware Classification

This work addresses classification of unknown binaries executed in sandbox by modeling their interaction with system resources (files, mutexes, registry keys and communication with servers over the network) and error messages provided by the operating system, using vocabulary-based method from the multiple instance learning paradigm. It introduces similarities suitable for individual resource t...

متن کامل

Multiple Instance Curriculum Learning for Weakly Supervised Object Detection

When supervising an object detector with weakly labeled data, most existing approaches are prone to trapping in the discriminative object parts, e.g., finding the face of a cat instead of the full body, due to lacking the supervision on the extent of full objects. To address this challenge, we incorporate object segmentation into the detector training, which guides the model to correctly locali...

متن کامل

Multiple Feature Learning for Action Classification

We review the performance of current state of the art fine-grained image classification algorithms using a variety of features on three datasets. Expanding on these results, we utilize a variety of feature combination techniques to improve performance by incorporating multiple features into classification. We hope to find that multiple kernel learning performs better than unsupervised feature l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2017

ISSN: 0020-0255

DOI: 10.1016/j.ins.2016.09.060